Printed in Great Britain. All rights reserved

Int. J. Solids Structures Vol. 33, No. 8, pp. 1221-1228, 1996
Copyright © 1995 Elsevier Science Ltd

@ Pergamon Pyrig
0020-7683/96 §15.00 + .00

0020-7683(94)00246-0

TWO THEOREMS ON STATICAL INDETERMINACY
OF STRUCTURES

B. TABARROK

Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia,
Canada

C. M. LEECH
Department of Mechanical Engineering, UMIST, Manchester, England

and
J. B. HADDOW

Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia,
Canada

(Received 26 February 1994 ; in revised form 18 September 1994)

Abstract—Classical structural theorems are concerned with extremum conditions of energy as a
function of displacement degrees of fréedom or that of the complementary energy as a function of
member forces. In this brief note the extremum conditions of energy and complementary energy are
viewed from the perspective of degrees of indeterminacy in the system. Specifically, it is shown that
the complementary energy in a system, under prescribed displacements, is reduced as the statical
indeterminacy of the systems is lowered by removal of some redundant members. Further, it is
shown that the loss in the complementary energy of the system is greater than the complementary
energy in the removed redundant members.

INTRODUCTION

The force method of structural analysis provides an effective means for the introduction
of the concept of indeterminacy in structures and it highlights the distinct roles of equi-
librium, constitutive relationships and compatibility in the overall solution process. Fur-
thermore, the notion of converting a statically indeterminate structure to a determinate one
by releasing the redundant members provides good physical insight into the analysis and
in a natural manner distinguishes mechanisms from structures. Normaily Castigliano’s
second theorem is invoked to compute the deflections associated with the set of equilibrating
forces, and by equating the deflections associated with the redundant members to given
values, the imagined gaps in the structure are closed. This approach is described and
illustrated in many introductory texts in structural mechanics [see, e.g., Tong and Christiano
(1987), Laible (1985) and Tauchert (1974)]. An equivalent alternative approach and one
that we will use, is based on the complementary virtual work principle.

In this note we introduce two theorems related to statical indeterminacy of structures.
Although these theorems apply to general elastostatic systems, they are best illustrated
through applications to structural systems with a finite number of degrees of statical
indeterminacy.

THEOREM 1

This states that the complementary strain energy of a statically indeterminate system
subjected to some prescribed displacements, will be reduced (or at best remain unchanged)
if the degree of statical indeterminacy of the system is reduced.

In the following we illustrate this theorem and subsequently provide a proof. By
choosing a particularly simple example we obtain analytical solutions and thereby maintain
the essence of the theorem in the foreground.
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Consider the static system shown in Fig. 1. The system is subjected to the prescribed
displacement d,. The three elastic members are linear with stiffnesses k,, k, and k; and
members 1 and 2 have the same length. The equilibrium equations are :

At joint 1:

Fy =F +F,. (D
At joint 2:
F,+F, =R, 2
where R, is the reaction force associated with ¢, and is an unknown of the problem.
There are two equilibrium equations and four unknown forces—hence the system has

two degrees of statical indeterminacy with respect to the prescribed displacement.
Now from the complementary virtual work theorem we have

3{F}TA{e} —6{R}"{d} =0 3)
where {F} is the vector of member forces, A{e} is the vector of changes in the extensions
of the elastic members, {d} denotes the prescribed displacement vector and {R} is the
vector of reactions associated with the prescribed displacements. For the complementary
virtual work expression in eqn (3) the internal forces {F} and reactions {R} must satisfy
the system equilibrium equations.

The elastic constitutive relationship allows us to express the complementary virtual

work of the extensions as variations of the complementary strain energy. Thus with the
relationship

Ale} = [¢){F} 4)
where [¢] is the compliance matrix, we can write
5{F)TA{e} = 6{F)TI$]{F} = 6V*
or
v* = H{F}T[9){F}. )

In this case we may express eqn (1) as

Fy F
et 4—/\/\/\ i o
F R
3 - F2 Fz - 1

Fig. 1. Statically indeterminate system subjected to prescribed displacement d.
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SV*—O6W, =0, (6)

where d W, denotes the complementary virtual work of prescribed displacements. In the
variational statement in eqn (6), equilibrating forces constitute the competing functions
and the extremum conditions emerge as a set of compatibility equations.

Now using the equilibrium equations (1) and (2), we express the complementary strain
energy of the system in Fig. 1 in terms of F, and F) as

ir. 1 1
ki ks k; F
v« =F, F , 7
| Lo [&] ™
k, k,  ky

where the square matrix in eqn (7) is the compliance matrix. Again, in terms of equilibrating
forces we may express the complementary virtual work of the prescribed displacement as:

Mn=éwln4j]. ®)

Using the above expressions for V* and W, in equation (6) we may obtain the following
compatibility equations as the system equations

1 1 1

k—1+k_3 k—a F, d, 9
I LJ=L} ®
v B'h

Solving for F, and F, we obtain:

F = (ky +ky+k3)’ 10
k3k2dl

Fy=—"7-"—. 11

2 = 4k, +Ky) )

The member force F, and the reaction force R, can now be determined from the equilibrium
equations and are given by

o ks(ki +ky)d,
F;=R, = Ktk ik, (12)

The member extensions can also be computed as

F] k3d1

Ao = = kT (13)
Fz _ k3d1

Ao = Tk tk ik (14)

_F F+F (ki +ky)d
Ae3—-k3— ky  kitky+ky (13
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Finally, the complementary strain energy of the system may be determined via eqns (7),
(10) and (11) and is given by

1k (ky+ko)d}

V* = .
2 ki+ky+k,

(16)

Now theorem 1 states that if the statical indeterminacy of the system is reduced, yielding a
system with a complementary strain energy V%, then

Vi, < V* (17

To illustrate this, let us remove the first member and reduce the degree of indeterminacy of
the system to 1. This can be accomplished readily by setting k, = 0. Then

1 kyk,d}
* o= . 1
Vnew 2 k2+k3 ( 8)

To demonstrate the validity of eqn (17), we need to show that

k,l-(i—ll;:]:fh > kzl-ctfk3 ‘ (1)
On rearranging we can write this expression as
(ky+k3)k, +ky) > ky(k, +ky +k3),
Le.
ky‘ky >0, (20)

which evidently is true since k, and &, are both positive.

Proof
From eqn (6) we may write the vanishing of the total complementary virtual work as

S{F}TI$1{F} —5{R}"{d} = {0}. @n

For the case when the redundancy in the system is reduced, we may set those elements of
the force vector {F} which belong to the removed redundant members, to zero and write
for the new system :

8{F};[9){F},—&{R}: {d} = {0}, 22)

where the subscript ‘r’ refers to the system with reduced degrees of indeterminacy. Now for
virtual forces we can take

3{F} = 3{F), = {F), and &{R} =5{R).. 3)

This can be done since 6{F}, is certainly an admissible virtual force for the original system.
Furthermore, since {F}, also satisfies the equilibrium equations, it may be used as a possible
virtual force vector. Now making use of eqn (23) in eqns (21) and (22) and substracting
the latter from the former, we find:
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{F}I$)({F} —{F}) = 0. (24)

Next we expand this expression and noting that [¢] is symmetric, we write it as

HFYT B F} —3 {F}9){F}. = ;({(F}T = {F}DIPI{F} — {F})). 25

Evidently the right-hand side of eqn (25) is positive and the left-hand side is V*~V%,.
This proves the theorem.

Discussion

It is important to note that the above theorem holds when the structure is loaded by
prescribed displacements and not forces. Thus, as a redundant member is removed and the
structure settles to a new equilibrium configuration, no external work is done on the
structure. Under such conditions, the complementary strain energy of the system drops as
its degrees of statical indeterminacy is reduced. Finally when the structure becomes a
mechanism, its complementary strain energy, under prescribed displacements, vanishes.
Proceeding in the opposite direction and increasing the degrees of statical indeterminacy in
the system, the complementary strain energy increases and, in the limit as the degrees of
indeterminacy of a system approach infinity, that is in the case of a continuum, the
complementary strain energy attains its maximum value.

When a continuum is analysed by the force method, usually in terms of stress functions
which by definition generate equilibrating force states, the number of terms used in the
assumed stress functions correspond to the number of degrees of indeterminacy allowed in
the model of the continuum. Thus the larger the number of terms in the assumed stress
functions, the larger will be the computed complementary strain energy of the model for
the continuum, i.e. the complementary strain energy of the model will be bounded above
by the true complementary strain energy of the continuum [see de Veubeke (1964)].

The above theorem holds for linear structural systems. Since for such systems the
complementary strain energy is equal in magnitude to the strain energy of the system, the
conclusions reached for the complementary strain energy also hold for the strain energy of
the system. .

For nonlinear systems, two difficulties normally limit the application of the force
method of analysis. First the kinematics of deformation appear in the equilibrium equations,
preventing satisfaction of the equilibrium equations in terms of force variables alone. This
is the consequence of geometric nonlinearities. Second, the constitutive equations relating
the member forces and deformations may be not invertible, preventing a definition for V*.
This effect is therefore due to material nonlinearities.

THEOREM 2

This theorem states that when the degrees of statical indeterminacy of a structure are
reduced by removing some redundant members, not only is the complementary strain
energy of the system reduced (theorem 1) but also this reduction is larger (or at best equal)
to the complementary strain energy of the removed members, i.e. there is a net loss of
complementary strain energy.

This theorem implies that an indeterminate structure subjected to some prescribed
displacements will have a certain amount of complementary energy ; this energy is the sum
total of the complementary.strain energies of the individual members in the structure. Then
through removal of a redundant element, the amount of complementary strain energy
stored in that element will be removed. At the same time the remaining structure will settle
to a new configuration and will lose part of its complementary strain energy (theorem 1).
The question that needs to be answered is whether the loss in the structure’s complementary
strain energy is larger or equal to the complementary strain energy of the redundant element
removed. The theorem asserts that :
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(A V*)structure 2 ( V*)removed members* (26)

Example

Consider again the system shown in Fig. 1. As before we will remove member 1 and
reduce the degrees of indeterminacy of the system from two to one. This will bring about a
reduction in the complementary strain energy of the system, as noted earlier, given by

k3k,d?

1
Vv == :
(A )slructure 2 (k| +k2+k3)(k3+k2)

@7

Now before removing member 1, we found its force as given in eqn (10). Hence the
complementary strain energy in this element is given by :

2 Zk 2
V7=‘2€,€L=‘ild‘—;- (28)
1 2(k]+k2+k3)

It now remains to demonstrate that:
(A V*)structurc 2 Vl .
From eqns (27) and (28) we deduce that

1 1
> .
(ki +ky+ks)(ka+ky) ~ (k, +k,+k3)>

(29)

The truth of this statement is self evident since k&, > 0.

Proof

Consider a structure under equilibrium and subjected to prescribed displacements {d}.
Now let us remove some redundant members. This will cause the system to undergo some
additional deformations but the prescribed displacements will not do further (comp-
lementary) work. Hence in this case we may express the principle of complementary virtual
work as

{F} ({e}—{e}) =0, (30)

where {e}, is the extension vector of the members in the reduced system in the settled new
configuration. The vector {e} denotes the extensions of the same members in the original
configuration, i.e. the configuration before the redundant members were removed. In each
case, we place zeros for the removed members in correspondence to the zeros in {F}

Now, we can use the actual forces in the reduced system as admissible virtual forces
since the actual forces are also self equilibrating. Thus we may express eqn (30) as

{Fii{e}. = {F}i{e}. 31)
By invoking the symmetry of the compliance matrix we may express eqn (31) as
{F}i{e}. =3 {F}T{e} +3{F}"{e}.. (32)

Now let us add and substract ;{F}  {e}. and ;{F}"{e} to the right-hand side of eqn (32)
and rearrange it in the following form:
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1P el —3{F} {e} = —3({F}" = {F}N({e} —{e}). (33)

We can now recognize the first term on the left-hand side as the complementary strain
energy of the reduced system in the new settled equilibrium configuration. The next term is
the complementary strain energy of .the system before the redundant members were
removed, but it excludes the complementary strain energy of the removed members, i.e.
this term is the complementary strain energy of the original system less the complementary
strain energy of the redundant members. The right-hand side being negative implies that
the reduction of the complementary strain energy of the system due to a change in its
configuration is larger than the complementary strain energy of the removed redundant
members. Hence there is a net loss of complementary strain energy as some redundant
members are removed.

CONCLUSIONS AND FURTHER COMMENTS

Two theorems have been introduced and illustrated by simple examples. The con-
clusions reached are consistent with the basic concepts in linear fracture mechanics for
brittle materials, i.e. as a crack grows in a domain subject to prescribed displacements, the
magnitude of the complementary strain energy will diminish (theorem 1) and part of the
complementary strain energy will be irrecoverable (theorem 2). This irrecoverable energy
is used in the generation of a new surface in the crack. Since little can be said, in general,
about the complementary strain energy of nonlinear structural systems, it is natural to
enquire if the above theorems, which as just noted hold for the strain energy of the system
in the linear case, remain valid for nonlinear systems. The answer is in the affirmative and
below we provide a heuristic demonstration.

The strain energy of a system is generally expressed in terms of continuous displace-
ments, i.e. the notions of statical indeterminacy, redundancy of members and imagined
cuts to develop statically determinate systems do not arise explicitly in the displacement
formulation. Nevertheless, one can still consider the addition and removal of structural
members and note the resulting changes in the strain energy of the system. To this end,
consider a statically determinate system as noted conceptually in Fig. 2(a). Evidently, the
system will store a certain amount of strain energy when it is subjected to the prescribed
displacement 4. If we now consider the same system plus a redundant member R (Fig.
2(b)), then we can see that under the same preseribed displacement, the strain energy in the
system will be larger, provided the stiffness of R is larger than zero. This result is valid
whether the force displacement relationship for R is of the softening or hardening type, but
the forece displacement curve must possess a positive slope. It is of course possible that
under the prescribed displacement the redundant member may remain undeformed. In that
case, the strain energy of the system will remain unaltered. Thus in general

V,zV,
or
V2 = Vl + V] 2.
Clearly, addition of further members to the system will bring about a cumulative effect.
Thus it is not essential to start from a statically determinate system. In loose terms, then,

one can say that the addition of new material (members) will tend to stiffen the system and
will cause the system to store a greater amount of strain energy under some prescribed

@) SD. d (o) sD. d
R

Fig. 2.
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displacements. This is the generalization of the first theorem for the strain energy function
of nonlinear systems.

To examine the second theorem, it is essential to distinguish the configurations of
the system under various states. Let us subject the original system to some prescribed
displacements and denote its strain energy by V. Next we add the redundant members and
subject the structure to the same displacements and obtain the strain energy V,. Now in
this last configuration, i.e. with the redundant members added, we compute the portion of
the strain energy in the original system, namely the system before the redundant members
were added, and denote it by V,,. For the same configuration we also compute the strain
energy in the redundant members and denote it by V,,.

Thus

Va=Vuy+Vo.
But we also have

Vo=V +Vi,

where V|, is the difference in the energy of the two systems and we have, from theorem 1,
that

V|2 > 0.
Thus
Vib+Vay=Vi+V
and

V(l)— VI = V|2 - V(z).

Now we know that ¥{;, = V, since in configuration (1) the original system is not in its
lowest strain energy state. The lowest strain energy state is in configuration 1. We thus
deduce that

Via 2 Vi,

i.e. the strain energy in the redundant member is less than the energy difference between
the two systems, i.e. part of the strain energy is lost.

The two theorems we have examined for structural systems have their counterparts in
inertial systems where one is concerned with the complementary kinetics rather than the
complementary strain energy functions. The corresponding theorem to theorem 1 is known
as Bertrand’s theorem and the theorem corresponding to theorem 2 is known as Carnot’s
theorem [see Tabarrok and Rimrott (1994)].
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